History
One of the first uses of advanced ceramics was for corrosion-resistant stoneware vessels in the chemical industry as early as the 1750s.Then came porcelain, which was first used in dentistry in the 1850s. With the invention of electric light in the 19th century, ceramic materials based on porcelain for electrical insulation were developed.
This was followed by the blooming of the radio and television broadcasting industry in the 20th century, which needed special heat resistant materials that could withstand the high-frequency electromagnetic fields. As a result, electro-ceramics such as steatite were developed. Subsequently, other electro-ceramics such as magnetic ceramics (ferrites) were developed, followed by capacitor ceramics (titanates) and electro-mechanical ceramics (piezoelectric ceramics). In the later part of the 20th century, the need for protecting tiny transistors and ICs from ambient conditions led to the development of ceramic packaging materials which facilitated further miniaturization.
Concurrent with the development of electro-ceramics, another sub-class of advanced ceramics which came to be called structural ceramics progressed, which had high structural and chemical integrity characterized by properties such as extremely high hardness, stiffness, and heat and chemical resistance. These structural ceramics found applications in various industries, for example in the space industry as heat and wear resistant tiles and nose cones on space shuttles, in the aerospace industry as bearings and turbine rotors, in the chemical industry as chemical resistant seals and conduits, in the defence industry as bullet-proof vests and armor plates for vehicles, in the biomedical industry as hip-joints, knee-joints and orbital implants, and so on.
Post a Comment